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Generalised spatial autocorrelation coefficients

Janusz L. Wywiał1

Abstract

The article focuses on properties generalised to the multidimensional case of known co-
efficients of spatial correlation. The main result of the work is the decomposition of the
introduced generalised autocorrelation coefficients into the sum of ordinary autocorrelation
coefficients, but calculated on the basis of the principal components of the originally ob-
served multidimensional variable. The development is illustrated with an empirical example.
The coefficients provide a more detailed description of the spatial relationships of a set of
variables defined in a population.

Key words: Moran coefficient, Geary coefficient, spatial autocorrelation, Mahalanobis dis-
tance, principal components.

1. Introduction

Exploration of various phenomena in natural, social, economic and other populations
requires an approach involving the analysis of relationships among observations of many
features defined in these populations. This applies to populations in which a distance be-
tween pairs of its members is defined. This can lead to the division of the population into
a set of homogeneous subpopulations. This was the inspiration for the preparation of this
work. The known Moran (1950) and Geary (1954) spatial autocorrelation coefficients de-
scribed below allow for the analysis of the spatial similarity in terms of single variables.
The properties of autocorrelation coefficients were considered by, among others, Getis and
Ord (1992), Griffith and Chun (2022). Recently, in the works of Krzyśko et al. (2023),
Krzyśko et al. (2024), the autocorrelation coefficients were significantly generalised to the
multivariate case. These generalizations use advanced functional analysis to simultaneously
analyze the spatio-temporal autocorrelation of time-varying vector observations. Du (2012)
generalised the Geary coefficient to a random vector. It could also be adapted to the Moran
coefficient.

Let xi, i = 1, ...,N be observations of x variable. Moran (1950) defined the coefficient of
spatial autocorrelation in the following way:
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where wi j ≥ 0, wii = 0, w=∑
N
i=1 ∑

N
j=1 wi j, v=∑

N
i=1(xi− x̄)2/N, x̄=∑

N
i=1 xi/N, qi j =wi j/w,

0 ≤ qi j ≤ 1. When neighbors are more similar (more different) than observations in general,
then Moran’s coefficient coefficient takes positive (negative) values. Values of this coeffi-
cient close to zero indicates absence of spatial similarity. Usually, −1 ≤ IM ≤ 1, see Cliff
and Ord (1981) or Overmars et al. (2003). However, this is not always the case. The range
of coefficient variability may take into account such distribution features of the examined
variable, as kurtosis or skewness.

Geary (1954) proposed the following coefficient:
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The value of the Geary coefficient greater (smaller) than one means large differences
(similarity) of neighboring objects. The value of this coefficient close to one means the lack
of substantial spatial autocorrelation in the sense described above.

Weight wi j, i ̸= j = 1, ...,N can be defined in several ways. For instance, the weights
may indicate the economic relationship between sub-areas. They may, for example, indi-
cate cooperative connections between economic regions, characterised by observations of a
multidimensional variable. In particular, these connections may be financial flows between
these companies. In this case, e.g. well-known input-output matrix of Leontief (1986) could
be used to construct the weights. Getis and Ord (1992) suggested to set that wi j = 1, when
|xi − x j| ≥ d0 and wi j = 0 in otherwise case, i ̸= j = 1, ...,N. For example, the constant
d0 could define the minimum flow of funds from one region to another or the maximum
distance (in km) between them.

2. Generalization and decomposition of spatial autocorrelation
coefficients

Let xit be the i-th observation of the t-th variable, i = 1, ...,N, t = 1, ...,k. These data are
elements of X = [xit ] matrix of dimension N×k, k ≤ N, X = [x∗1...x∗t ...x∗k], where x∗t is the
t-th column of X , xT

∗t = [x1t ...xit ...xNt ]. The i-th row of X is denoted by xi∗ = [xi1...xit ...xik].
In particular, for k = 1, X = [x11 x21...xN1]

T = [x1 x2...xN ]
T . The variance-covariance matrix

is denoted by V = [v jt ] where v jt =
1
N ∑

N
i=1(xi j − x̄ j)(xit − x̄t), x̄t =

1
N ∑

N
i=1 xit , t, j = 1, ...,h.

We assume that V is nonsingular.
Du et al. (2012)) proposed the following generalization of Geary’s coefficient:
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where qi j is explained below the expression (1) and

di j = (xi∗− x j∗)V−1(xi∗− x j∗)
T (4)

is the Mahalanobis distance between xi∗ and x j∗. Values of IG
k close to unity indicate lack of
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similarity or differences of neighboring objects due to the multidimensional variable value
vectors observed in them than in the case of all the objects (not necessary neighbours).

When IG
k > 1, there is a tendency that neighboring objects are more dissimilar from each

other in terms of Mahanalobis distance than in the case of IG
k < 1. For instance, taking into

account the aforementioned suggestion of Getis and Ord (1992) we can assume that wi j = 1
if di j ≥ d0 and wi j = 0 in otherwise case, i ̸= j = 1, ...,N, d0 > 0.

Let us generalize Moran’s coefficient for the case when k ≥ 1 as follows:
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where
bi j = (xi∗− x̄)V−1(x j∗− x̄)T . (6)

Positive values of IM
k coefficient indicate that the observations of the vectors of the

multivariate variable are similar in terms of the direction of their deviation from the vector
of means. If the observation vectors of variables in neighboring objects deviate from the
average vector in different directions, then we can expect that the autocorrelation coefficient
is negative. Values of the autocorrelation coefficient close to zero indicate lack of similarity
or dissimilarity of neighboring objects due to the multivariate variable. Just like it was in
the case of IG we can assume that wi j = 1 if bi j ≥ b0 and wi j = 0 in otherwise case, b0 > 0,
i ̸= j = 1, ...,N.

In order to decompose the coefficients let us assume that C is such orthogonal matrix
that CTC = Uk and CTVC = λ where Uk is k× k identity matrix, λ = [λt ] is the diagonal
matrix consisting of the eigenvalues of V denoted by λt ≥ 0, t = 1, ...,k, see, e.g. Harville
(1997) or Morrison (1976). Note that V ct = λtUk where ct is the t-th column of C, cT

t =

[c1t ...ckt ] and it is the t-th eigenvector of V . Observations of the t-th principal component
are determined by zt = Xct . The components of the vector λtct are covariances between
the t-th principal component zt and the entire variables represented by the columns of X .
The correlation coefficient between the t-th principal component and observations of the
i-th original variable represented by the column x∗i is as follows:

r(zt ,x∗i) = cit

√
λt

vi
, i = 1, ...,k. (7)

In Appendix we show that the generalised Moran coefficient could be decomposed as
follows:

IM
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is the ordinary Moran spatial autocorrelation coefficient calculated based for the t-th prin-
cipal component of X . Hence, IM

k is the average of the Moran autocorrelation coefficients
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calculated for the principal components. If this average is equal to zero, the coefficients for
the principal components may be non-zero – they happen to cancel each other out.

Similarly to (8) we derive (see Appendix) the following decomposition of Geary’s coef-
ficient:
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k
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k,t (10)

where
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N
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is the ordinary Geary’s spatial autocorrelation coefficient calculated based on the t-th prin-
cipal component of X . Thus, IG

k is average of Geary’s autocorrelation coefficients calculated
for the principal components.

Example

We illustrate the generalised autocorrelation coefficient with an example of the fol-
lowing variables defined for Polish voivodships: revenues from total economic activity
(x1), sold production of industry (x2), capital expenditures per capita (x3), gross value of
fixed assets per capita (x4), average monthly gross salaries (x5). Data are available at:
https://bdl.stat.gov.pl/bdl/start. Variables have been scaled to have the value of each variable
divided by the value assigned to the capital voivodship.

The values of the ordinary Moran autocorrelation coefficient (see expression (1)) for the
listed variables x1, ...,x5 are as follows: -0.2242, -0.3408, -0.2328, 0.2478, -0.2227. So, all
Moran’s coefficients are negative except x4. The values of the ordinary Geary autocorre-
lation (given by expression (5)) for these variables are as follows: 2.7022, 2.7408, 2.4931,
1.8085, 2.5498.

Moran’s and Geary’s generalised coefficients take the following values −0.0332 and
1.0039, respectively. Thus, both coefficients would indicate that the spatial autocorrelation
for all variables is very weak.

Now, let us consider the decomposition of the generalised coefficients. The eigenvalues
(variances of principal components) of the considered x1, ...,x5 are: 0.1633, 0.0318, 0.0082,
0.0060, 0.0018. The shares of these eigenvalues in their sum are as follows (%): 77.3, 15.1
3.9. 2.9, 0.8. The first two principal components explain 92.4% of the overall variation of
x1, ...,x5. Thus, the first two principal components explain almost all of the variability of
x1, ...,x5. So, the other three principal components can be ignored.

The Moran coefficient for the successive principal components are as follows: -0.2811,
0.3227, -0.0494, -0.7024 and -0.0856. The Geary coefficient for the successive principal
components are as follows: 2.8019, 1.3663, 1.7604, 1.7323 and 2.3778.

The matrix of the ordinary correlation coefficients between the principal components
and the original variables is as follows:
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−0.9563 −0.9167 −0.8233 0.7170 −0.8099
0.1825 −0.3515 −0.2944 −0.6659 −0.1934
0.0048 −0.1692 0.4652 0.0167 0.2725
0.2270 −0.8640 −0.1176 0.2072 0.0776
0.0247 −0.9779 −0.0726 0.0137 −0.4759

 (12)

In the i-th row there are correlation coefficients between the i-th principal component
and the original variable, i = 1, ...,5. The first principal component representing the disper-
sion of all the original variables is strongly correlated with the original variables (see the
first row of the matrix given by expression (12)). The second and last principal components
are distinctly correlated with the original variables denoted by x2, x4 and x2, x5, respectively.
The third and fourth principal components are rather clearly correlated with variables x3 and
x2, respectively. The last three principal components explain less than 9% variability of the
original variables. Therefore, it suffices to consider only spatial autocorrelation coefficient
for the first and second component. Moran’s and Geary’s coefficients calculated on the basis
of the first component are -0.2811 and 2.8019, respectively. Therefore, it can be concluded
that neighboring Polish voivodeships differ in their observations of the first principal com-
ponent. Moran’s and Geary’s coefficients calculated on the basis of the second component
are 0.3227 and 1.3663, respectively. In this case, the coefficient indicated similarity and
dissimilarity, respectively.

Note that the values of both the generalised Moran and Geary coefficients (calculated
for the original vector observations) are close to zero and one, respectively. This means
that there is no tendency to similarity or dissimilarity between the values of a multivariate
variable observed on neighboring objects. In our case this is due to the fact that the gen-
eralised autocorrelation coefficients are the average values of the ordinary autocorrelation
coefficients calculated for the individual principal components of a multivariate variable.

3. Conclusions

The results of considerations on the properties of generalised spatial autocorrelation
coefficients of the population objects characterized by observation vectors of a multidimen-
sional variable are as follows. For this purpose, a generalization of the Moran coefficient
was defined in a similar way to the generalization of the Geary coefficient proposed by Du
et al. (2012). Both generalised coefficients indicate the degree of similarity between neigh-
boring objects due to the distance between the observation vectors of the multidimensional
variable observed in them. The principal components of a multivariate variable allow for the
presentation of each of the generalised coefficients as the arithmetic mean of the ordinary
spatial autocorrelation coefficients, but calculated on the basis of the principal components.
It was shown that the decomposition of the original variable into principal components can
lead to a substantial simplification of the analysis of multivariate spatial autocorrelation.
Moreover, it was concluded that the interpretation of the generalised autocorrelation coeffi-
cients may lead to misleading results and therefore must be carried out simultaneously with
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the analysis of ordinary autocorrelation coefficients determined on the basis of individual
principal components. Finally, we can say that the obtained results allow the use of prin-
cipal component analysis to enrich the interpretation of generalised spatial autocorrelation
coefficients.
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Appendix

According to notation introduced in Section 2, the equation CVCT = λ is transformed to
the following V =CT

λC because C−1 =CT . The t-the principal component is determined
by z∗t = Xct , t = 1, ...,k and Z = [z∗1...z∗k] = XC, C = [c1...ck].

The equation C−1 =CT let us write V−1 = (CλCT )−1 = (CT )−1(Cλ )−1 =Cλ
−1CT . More-

over: ZCT = X , zi∗CT = xi∗, x̄ = UT
NX/N = UT

NZCT/N = z̄CT , i = 1, ...,N. These results
let us rewrite the equation (6) as follows:

bi j = (zi∗CT − z̄CT )V−1(z j∗CT − z̄CT )T = (zi∗− z̄)CTV−1C(z j∗− z̄)T =

= (zi∗− z̄)CTCλ
−1CTC(z j∗− z̄)T = (zi∗− z̄)λ−1(z j∗− z̄)T =

= [(zi1 − z̄1)...(zit − z̄t)...(zik − z̄k)][λ
−1
t ][(z j1 − z̄1)...(z jt − z̄t)...(z jk − z̄k)]

T =

= [(zi1 − z̄1)λ
−1
1 ...(zit − z̄t)λ

−1
t ...(zik − z̄1)λ

−1
k ][(z j1 − z̄1)...(z jt − z̄t)...(z jk − z̄k)]

T =

=
k

∑
t=1

(zit − z̄t)λ
−1
t (z jt − z̄t) =

1
λt

k

∑
t=1

(zit − z̄t)(z jt − z̄t).

This and equations (1) and (5) lead to the following:

IM
k =

N

∑
i=1

N

∑
j=1

bi jqi j =
N

∑
i=1

N

∑
j=1

1
λt

k

∑
t=1

(zit − z̄t)(z jt − z̄t)qi j =

=
k

∑
t=1

1
λt

N

∑
i=1

N

∑
j=1

(zit − z̄t)(z jt − z̄t)qi j.

This directly leads to equation (8).

Similarly, equation (10) could be derived as follows:

di j = (zi∗CT − z j∗CT )V−1(zi∗CT − z j∗CT )T = (zi∗− z j∗)CTV−1C(zi∗− z j∗)
T =
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T =
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−1
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=
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This and equations (2), (3) lead to the following:
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This directly leads to equation (10).


